

Revision Geometry

Circle

F is diametrically opposite to M:

[MF] is a diameter

Perimeter: $P = 2\pi R = \pi \times D$

Area: $A = \pi R^2 = \frac{\pi D^2}{4}$

BSA BE SMAIT ACADEMY

Arc and angles

BSA BE SMART ACADEMY

Arc and angles

$$mes \widehat{AB} = 2\widehat{AMB}$$

$$\widehat{AMB} = \frac{mes\widehat{AB}}{2}$$

BSA BE SMAIT ACADEMY

Arc and angles

$$\widehat{AMB} = \frac{mes\widehat{AB}}{2} = \frac{180^{\circ}}{2} = 90^{\circ}$$

In general:

 $\widehat{AMB} = 90^{\circ}$ angle inscribed in a semi circle of diameter [AB]

Pythagoras theorem

Condition:

ABC is a right triangle at A

Result:

$$hyp^2 = side1^2 + side2^2$$
$$BC^2 = AB^2 + AC^2$$

Converse of Pythagoras theorem

Condition:

Length of the three sides is given and

$$BC^2 = AB^2 + AC^2$$

Result:

ABC is a right triangle at A

Converse of Pythagoras theorem is used always to show that a triangle is right

Midpoint theorem

Condition:

$$M * [AB]$$

$$N * [AC]$$

Result:

$$(MN) // (BC)$$

and $MN = \frac{BC}{2}$

Converse of Midpoint theorem

Condition:

M * [AB]
(MN) // (BC)

Result:

N * [AC]

Median theorem

Condition:

ABC is a right triangle at A

[AM] is the median relative to the hypotenuse [BC]

Result:

$$AM = \frac{BC}{2}$$

Converse of Median theorem

Condition:

[AM] is the median relative to [BC]

$$AM = \frac{BC}{2}$$

ABC is a right triangle at A

